Package index
Functional Data Analysis and Utilities for Statistical Computings
Routines for exploratory and descriptive analysis of functional data such as depth measurements, atypical curves detection, regression models, supervised classification, unsupervised classification and functional analysis of variance.
-
fda.usc-package
fda.usc
- Functional Data Analysis and Utilities for Statistical Computing (fda.usc)
-
fdata()
- Converts raw data or other functional data classes into fdata class.
-
fdata2fd()
- Converts fdata class object into fd class object
-
fdata.bootstrap()
- Bootstrap samples of a functional statistic
-
fdata.cen()
- Functional data centred (subtract the mean of each discretization point)
-
fdata.deriv()
- Computes the derivative of functional data object.
-
Math(<fdata>)
Ops(<fdata>)
Summary(<fdata>)
split(<fdata>)
order.fdata()
is.fdata()
- fdata S3 Group Generic Functions
-
fdata2pc()
- Principal components for functional data
-
fdata2pls()
- Partial least squares components for functional data.
-
summary(<fdata.comp>)
- Correlation for functional data by Principal Component Analysis
-
func.mean()
func.var()
func.trim.FM()
func.trim.mode()
func.trim.RP()
func.trim.RT()
func.trim.RPD()
func.med.FM()
func.med.mode()
func.med.RP()
func.med.RT()
func.med.RPD()
func.trimvar.FM()
func.trimvar.mode()
func.trimvar.RP()
func.trimvar.RPD()
func.trimvar.RT()
func.mean.formula()
- Descriptive measures for functional data.
-
Var.y()
- Sampling Variance estimates
-
create.fdata.basis()
create.pc.basis()
create.pls.basis()
create.raw.fdata()
- Create Basis Set for Functional Data of fdata class
-
fdata2basis()
summary(<basis.fdata>)
- Compute fucntional coefficients from functional data represented in a base of functions
-
depth.mode()
depth.RP()
depth.RPD()
depth.RT()
depth.KFSD()
depth.FSD()
depth.FM()
- Computation of depth measures for functional data
-
mdepth.LD()
mdepth.HS()
mdepth.RP()
mdepth.MhD()
mdepth.KFSD()
mdepth.FSD()
mdepth.FM()
mdepth.TD()
mdepth.SD()
- Provides the depth measure for multivariate data
-
depth.modep()
depth.RPp()
depth.FMp()
- Provides the depth measure for a list of p–functional data objects
-
optim.basis()
- Select the number of basis using GCV method.
-
optim.np()
- Smoothing of functional data using nonparametric kernel estimation
-
S.basis()
- Smoothing matrix with roughness penalties by basis representation.
-
metric.dist()
- Distance Matrix Computation
-
metric.DTW()
metric.WDTW()
metric.TWED()
- DTW: Dynamic time warping
-
metric.hausdorff()
- Compute the Hausdorff distances between two curves.
-
metric.kl()
- Kullback–Leibler distance
-
metric.ldata()
- Distance Matrix Computation for ldata and mfdata class object
-
metric.lp()
- Approximates Lp-metric distances for functional data.
-
semimetric.basis()
- Proximities between functional data
-
semimetric.deriv()
semimetric.fourier()
semimetric.hshift()
semimetric.mplsr()
semimetric.pca()
- Proximities between functional data (semi-metrics)
-
plot(<fdata>)
lines(<fdata>)
title.fdata()
plot(<mdepth>)
plot(<depth>)
plot(<bifd>)
plot(<lfdata>)
- Plot functional data: fdata class object
-
na.omit(<fdata>)
na.fail(<fdata>)
- A wrapper for the na.omit and na.fail function for fdata object
-
aemet
- aemet data
-
MCO
- Mithochondiral calcium overload (MCO) data set
-
phoneme
- phoneme data
-
poblenou
- poblenou data
-
tecator
- tecator data
-
outliers.depth.pond()
outliers.depth.trim()
outliers.lrt()
outliers.thres.lrt()
- outliers for functional dataset
-
fanova.hetero()
- ANOVA for heteroscedastic data
-
fanova.onefactor()
- One–way anova model for functional data
-
fanova.RPm()
summary(<fanova.RPm>)
- Functional ANOVA with Random Project.
-
dcor.xy()
dcor.dist()
bcdcor.dist()
dcor.test()
- Distance Correlation Statistic and t-Test
-
fregre.basis.cv()
- Cross-validation Functional Regression with scalar response using basis representation.
-
fregre.basis()
- Functional Regression with scalar response using basis representation.
-
fregre.bootstrap()
- Bootstrap regression
-
fregre.np.cv()
- Cross-validation functional regression with scalar response using kernel estimation.
-
fregre.np()
- Functional regression with scalar response using non-parametric kernel estimation
-
fregre.pc.cv()
- Functional penalized PC regression with scalar response using selection of number of PC components
-
fregre.pc()
- Functional Regression with scalar response using Principal Components Analysis
-
fregre.pls.cv()
- Functional penalized PLS regression with scalar response using selection of number of PLS components
-
fregre.pls()
- Functional Penalized PLS regression with scalar response
-
fregre.gkam()
- Fitting Functional Generalized Kernel Additive Models.
-
fregre.glm()
- Fitting Functional Generalized Linear Models
-
fregre.gls()
- Fit Functional Linear Model Using Generalized Least Squares
-
fregre.gsam()
- Fitting Functional Generalized Spectral Additive Models
-
fregre.igls()
- Fit of Functional Generalized Least Squares Model Iteratively
-
fregre.lm()
- Fitting Functional Linear Models
-
fregre.plm()
- Semi-functional partially linear model with scalar response.
-
fregre.glm.vs()
- Variable Selection using Functional Linear Models
-
fregre.gsam.vs()
- Variable Selection using Functional Additive Models
-
LMDC.select()
LMDC.regre()
- Impact points selection of functional predictor and regression using local maxima distance correlation (LMDC)
-
fregre.basis.fr()
- Functional Regression with functional response using basis representation.
-
FDR()
pvalue.FDR()
- False Discorvery Rate (FDR)
-
dfv.statistic()
dfv.test()
- Delsol, Ferraty and Vieu test for no functional-scalar interaction
-
XYRP.test()
MMD.test()
MMDA.test()
fEqDistrib.test()
- Tests for checking the equality of distributions between two functional populations.
-
fmean.test.fdata()
cov.test.fdata()
- Tests for checking the equality of means and/or covariance between two populations under gaussianity.
-
Ftest.statistic()
flm.Ftest()
- F-test for the Functional Linear Model with scalar response
-
flm.test()
- Goodness-of-fit test for the Functional Linear Model with scalar response
-
Adot()
PCvM.statistic()
- PCvM statistic for the Functional Linear Model with scalar response
-
rp.flm.statistic()
- Statistics for testing the functional linear model using random projections
-
rp.flm.test()
- Goodness-of fit test for the functional linear model using random projections
-
classif.DD()
- DD-Classifier Based on DD-plot
-
classif.depth()
- Classifier from Functional Data
-
classif.gkam()
- Classification Fitting Functional Generalized Kernel Additive Models
-
classif.glm()
- Classification Fitting Functional Generalized Linear Models
-
classif.gsam()
- Classification Fitting Functional Generalized Additive Models
-
classif.gsam.vs()
- Variable Selection in Functional Data Classification
-
classif.kfold()
- Functional Classification usign k-fold CV
-
classif.nnet()
classif.rpart()
classif.svm()
classif.ksvm()
classif.randomForest()
classif.lda()
classif.qda()
classif.naiveBayes()
classif.cv.glmnet()
classif.gbm()
- Functional classification using ML algotithms
-
classif.np()
classif.knn()
classif.kernel()
- Kernel Classifier from Functional Data
-
predict(<classif.DD>)
- Predicts from a fitted classif.DD object.
-
predict(<classif>)
- Predicts from a fitted classif object.
-
predict(<fregre.fd>)
- Predict method for functional linear model (fregre.fd class)
-
predict(<fregre.fr>)
- Predict method for functional response model
-
predict(<fregre.gls>)
predict(<fregre.igls>)
- Predictions from a functional gls object
-
predict(<fregre.gkam>)
predict(<fregre.glm>)
predict(<fregre.gsam>)
predict(<fregre.lm>)
predict(<fregre.plm>)
- Predict method for functional linear model
-
summary(<classif>)
print(<classif>)
- Summarizes information from kernel classification methods.
-
summary(<fregre.fd>)
- Summarizes information from fregre.fd objects.
-
summary(<fregre.gkam>)
- Summarizes information from fregre.gkam objects.
-
influence(<fregre.fd>)
- Functional influence measures
-
influence_quan()
- Quantile for influence measures
-
kmeans.center.ini()
kmeans.fd()
- K-Means Clustering for functional data
-
inprod.fdata()
- Inner products of Functional Data Objects o class (fdata)
-
int.simpson()
int.simpson2()
- Simpson integration
-
norm.fdata()
norm.fd()
- Approximates Lp-norm for functional data.
-
rcombfdata()
gridfdata()
- Utils for generate functional data
-
r.ou()
- Ornstein-Uhlenbeck process
-
rdir.pc()
- Data-driven sampling of random directions guided by sample of functional data
-
rproc2fdata()
- Simulate several random processes.
-
rwild()
- Wild bootstrap residuals
-
mfdata()
names(<mfdata>)
subset(<mfdata>)
- mfdata class definition and utilities
-
ldata()
names(<ldata>)
is.ldata()
`[`(<ldata>)
subset(<ldata>)
plot(<ldata>)
- ldata class definition and utilities
-
cat2meas()
tab2meas()
pred.MSE()
pred.RMSE()
pred.MAE()
pred2meas()
- Performance measures for regression and classification models
-
weights4class()
- Weighting tools
-
trace.matrix()
argvals.equi()
`+`(<fdata>)
`-`(<fdata>)
`*`(<fdata>)
`/`(<fdata>)
`[`(<fdata>)
`!=`(<fdata>)
`==`(<fdata>)
`^`(<fdata>)
dim(<fdata>)
ncol.fdata()
nrow.fdata()
length(<fdata>)
NROW.fdata()
NCOL.fdata()
rownames.fdata()
colnames.fdata()
c(<fdata>)
argvals()
rangeval()
`[`(<fdist>)
is.na(<fdata>)
anyNA(<fdata>)
count.na.fdata()
unlist_fdata()
- fda.usc internal functions
-
subset(<fdata>)
- Subsetting
-
ops.fda.usc()
- ops.fda.usc Options Settings
-
cond.F()
- Conditional Distribution Function
-
cond.mode()
- Conditional mode
-
cond.quantile()
- Conditional quantile
-
CV.S()
- The cross-validation (CV) score
-
GCV.S()
- The generalized correlated cross-validation (GCCV) score
-
GCCV.S()
- The generalized correlated cross-validation (GCCV) score.
-
dev.S()
- The deviance score
-
dis.cos.cor()
- Proximities between functional data
-
h.default()
- Calculation of the smoothing parameter (h) for a functional data
-
Kernel.asymmetric()
- Asymmetric Smoothing Kernel
-
Kernel.integrate()
- Integrate Smoothing Kernels.
-
Kernel()
- Symmetric Smoothing Kernels.
-
P.penalty()
- Penalty matrix for higher order differences