Classifier of functional data by kernel method using functional data object
of class classif
. Returns the predicted classes using a previously trained model.
Usage
# S3 method for class 'classif'
predict(object, new.fdataobj = NULL, type = "class", ...)
Value
If type="class", produces a vector of predictions. If type="probs", a list with the following components is returned:
group.pred
the vector of predictions.prob.group
the matrix of predicted probability by factor level.
References
Ferraty, F. and Vieu, P. (2006). Nonparametricc functional data analysis. Springer Series in Statistics, New York.
Ramsay, James O., and Silverman, Bernard W. (2006), Functional Data Analysis, 2nd ed., Springer, New York.
See also
See also classif.np
classif.glm
,
classif.gsam
and classif.gkam
.
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Examples
if (FALSE) { # \dontrun{
data(phoneme)
mlearn <- phoneme[["learn"]][1:100]
glearn <- phoneme[["classlearn"]][1:100]
# ESTIMATION knn
out1 <- classif.knn(glearn, mlearn, knn = 3)
summary(out1)
# PREDICTION knn
mtest <- phoneme[["test"]][1:100]
gtest <- phoneme[["classtest"]][1:100]
pred1 <- predict(out1, mtest)
table(pred1, gtest)
# ESTIMATION kernel
h <- 2^(0:5)
# using metric distances computed in classif.knn
out2 <- classif.kernel(glearn, mlearn, h = h, metric = out1$mdist)
summary(out2)
# PREDICTION kernel
pred2 <- predict(out2,mtest)
table(pred2,gtest)
} # }