Fits Nonparametric Supervised Classification for Functional Data.
Usage
classif.np(
group,
fdataobj,
h = NULL,
Ker = AKer.norm,
metric,
weights = "equal",
type.S = S.NW,
par.S = list(),
...
)
classif.knn(
group,
fdataobj,
knn = NULL,
metric,
weights = "equal",
par.S = list(),
...
)
classif.kernel(
group,
fdataobj,
h = NULL,
Ker = AKer.norm,
metric,
weights = "equal",
par.S = list(),
...
)
Arguments
- group
Factor of length n
- fdataobj
fdata
class object.- h
Vector of smoothing parameter or bandwidth.
- Ker
Type of kernel used.
- metric
Metric function, by default
metric.lp
.- weights
weights.
- type.S
Type of smothing matrix
S
. By defaultS
is calculated by Nadaraya-Watson kernel estimator (S.NW
).- par.S
List of parameters for
type.S
:w
, the weights.- ...
Arguments to be passed for
metric.lp
o other metric function andKernel
function.- knn
Vector of number of nearest neighbors considered.
Value
fdataobj
:fdata
class object.group
: Factor of lengthn
.group.est
: Estimated vector groups.prob.group
: Matrix of predicted class probabilities. For each functional point shows the probability of each possible group membership.max.prob
: Highest probability of correct classification.h.opt
: Optimal smoothing parameter or bandwidht estimated.D
: Matrix of distances of the optimal quantile distancehh.opt
.prob.classification
: Probability of correct classification by group.misclassification
: Vector of probability of misclassification by number of neighborsknn
.h
: Vector of smoothing parameter or bandwidht.C
: A call of functionclassif.kernel
.
Details
Make the group classification of a training dataset using kernel or KNN
estimation: Kernel
.
Different types of metric funtions can be used.
Note
If fdataobj
is a data.frame the function considers the case of
multivariate covariates. metric.dist
function is used to
compute the distances between the rows of a data matrix (as
dist
function.
References
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
Ferraty, F. and Vieu, P. (2006). NPFDA in practice. Free access on line at https://www.math.univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/
See also
See Also as predict.classif
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es