Create a functional data object of class fdata
from (matrix
,
data.frame
, numeric
, integer
, fd, fds, fts
or
sfts
) class data.
Arguments
- mdata
Matrix of set cases with dimension (
n
xm
), wheren
is the number of curves andm
are the points observed in each curve.- argvals
Argvals, by default:
1:m
.- rangeval
(optional) Range of discretization points, by default: range(
argvals
).- names
(optional) list with tree components:
main
an overall title,xlab
title forx
axis andylab
title fory
axis.- fdata2d
TRUE class fdata2d, the functional data is observed in at least a two grids (the
argvals
is a list of vectors). By defaultfdata2d=FALSE
the functional data is observed in a single grid (theargvals
is a vector).
Value
Return fdata
class object with:
"data"
: matrix of set cases with dimension (n
xm
), wheren
is the number of curves andm
are the points observed in each curve"rangeval"
: the discretizations points values, if not provided:1:m
"rangeval"
: range of the discretizations points values, by default: range(argvals
)"names"
: (optional) list withmain
an overall title,xlab
title forx
axis andylab
title fory
axis.
References
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
See also
See Also as plot.fdata
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Examples
if (FALSE) { # \dontrun{
data(phoneme)
mlearn<-phoneme$learn[1:4,1:150]
# Center curves
fdata.c=fdata.cen(mlearn)$Xcen
par(mfrow=c(2,1))
plot(mlearn,type="l")
plot(fdata.c,type="l")
# Convert from class fda to fdata
bsp1 <- create.bspline.basis(c(1,150),21)
fd1 <- Data2fd(1:150,y=t(mlearn$data),basisobj=bsp1)
fdataobj=fdata(fd1)
# Convert from class fds, fts or sfts to fdata
#require(fds)
#a=fds(x = 1:20, y = Simulationdata$y, xname = "x",
# yname = "Simulated value")
#b=fts(x = 15:49, y = Australiasmoothfertility$y, xname = "Age",
# yname = "Fertility rate")
#c=sfts(ts(as.numeric(ElNino_ERSST_region_1and2$y), frequency = 12), xname = "Month",
#yname = "Sea surface temperature")
#class(a);class(b);class(c)
#fdataobj=fdata(b)
} # }