Represent symmetric smoothing kernels:: normal, cosine, triweight, quartic and uniform.
Details
Ker.norm=dnorm(u) | |
Ker.cos=ifelse(abs(u)<=1,pi/4*(cos(pi*u/2)),0) | |
Ker.epa=ifelse(abs(u)<=1,3/4*(1-u^2),0) | |
Ker.tri=ifelse(abs(u)<=1,35/32*(1-u^2)^3,0) | |
Ker.quar=ifelse(abs(u)<=1,15/16*(1-u^2)^2,0) | |
Ker.unif=ifelse(abs(u)<=1,1/2,0) |
Type of kernel:
Normal Kernel: Ker.norm | |
Cosine Kernel: Ker.cos | |
Epanechnikov Kernel: Ker.epa | |
Triweight Kernel: Ker.tri | |
Quartic Kernel:
Ker.quar | |
Uniform Kernel: Ker.unif |
References
Ferraty, F. and Vieu, P. (2006). Nonparametric functional
data analysis. Springer Series in Statistics, New York.
Hardle, W. Applied Nonparametric Regression. Cambridge University Press, 1994.
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es