Distance correlation t-test of multivariate and functional independence (wrapper functions of energy package).
Usage
dcor.xy(x, y, test = TRUE, metric.x, metric.y, par.metric.x, par.metric.y, n)
dcor.dist(D1, D2)
bcdcor.dist(D1, D2, n)
dcor.test(D1, D2, n)Arguments
- x
data (fdata, matrix or data.frame class) of first sample.
- y
data (fdata, matrix or data.frame class) of second sample.
- test
if TRUE, compute bias corrected distance correlation statistic and the corresponding t-test, else compute distance correlation statistic.
- metric.x, metric.y
Name of metric or semi-metric function used for compute the distances of
xandyobject respectively. By default,metric.lpfor functional data andmetric.distfor multivariate data.- par.metric.x, par.metric.y
List of parameters for the corresponding metric function.
- n
The sample size used in bias corrected version of distance correlation, by default is the number of rows of
x.- D1
Distances of first sample (x data).
- D2
Distances of second sample (y data).
Value
dcor.test returns a list with class htest containing
method: description of test.statistic: observed value of the test statistic.parameter: degrees of freedom.estimate: bias corrected distance correlationbcdcor(x,y).p.value: p-value of the t-test.data.name: description of data.
dcor.xy returns the previous list with class htest and
D1: the distance matrix ofx.D2: the distance matrix ofy.
dcor.dist returns the distance correlation statistic.
bcdcor.dist returns the bias corrected distance correlation
statistic.
Details
These wrapper functions extend the functions of the energy package
for multivariate data to functional data. Distance correlation is a measure
of dependence between random vectors introduced by Szekely, Rizzo, and
Bakirov (2007).
dcor.xy performs a nonparametric t-test of multivariate or functional
independence in high dimension. The distribution of the test statistic is
approximately Student t with \(n(n-3)/2-1\) degrees of freedom and for
\(n \geq 10\) the statistic is approximately distributed as standard
normal. Wrapper function of energy:::dcor.ttest. The t statistic is
a transformation of a bias corrected version of distance correlation (see SR
2013 for details). Large values (upper tail) of the t statistic are
significant.dcor.test similar to dcor.xy but only for distance matrix.
dcor.dist compute distance correlation statistic. Wrapper function
of energy::dcor but only for distance matrix
bcdcor.dist compute bias corrected distance correlation statistic.
Wrapper function of energy:::bcdcor but only for distance matrix.
References
Szekely, G.J. and Rizzo, M.L. (2013). The distance correlation t-test of independence in high dimension. Journal of Multivariate Analysis, Volume 117, pp. 193-213.
Szekely, G.J., Rizzo, M.L., and Bakirov, N.K. (2007), Measuring and Testing Dependence by Correlation of Distances, Annals of Statistics, Vol. 35 No. 6, pp. 2769-2794.
See also
metric.lp amd metric.dist.
Author
Manuel Oviedo de la Fuente manuel.oviedo@udc.es and Manuel Febrero Bande
Examples
if (FALSE) { # \dontrun{
x<-rproc2fdata(100,1:50)
y<-rproc2fdata(100,1:50)
dcor.xy(x, y,test=TRUE)
dx <- metric.lp(x)
dy <- metric.lp(y)
dcor.test(dx, dy)
bcdcor.dist(dx, dy)
dcor.xy(x, y,test=FALSE)
dcor.dist(dx, dy)
} # }