Functional Regression with scalar response using basis representation.
Source:R/fregre.basis.R
fregre.basis.Rd
Computes functional regression between functional explanatory variable \(X(t)\) and scalar response \(Y\) using basis representation.
Arguments
- fdataobj
fdata
class object.- y
Scalar response with length
n
.- basis.x
Basis for functional explanatory data
fdataobj
.- basis.b
Basis for functional beta parameter.
- lambda
A roughness penalty. By default, no penalty
lambda=0
.- Lfdobj
See eval.penalty.
- weights
weights
- ...
Further arguments passed to or from other methods.
Value
Return:
call
: The matched call.coefficients
: A named vector of coefficients.residuals
:y
minusfitted values
.fitted.values
: Estimated scalar response.beta.est
: Estimated beta parameter of classfd
.weights
: (only for weighted fits) the specified weights.df.residual
: The residual degrees of freedom.r2
: Coefficient of determination.sr2
: Residual variance.Vp
: Estimated covariance matrix for the parameters.H
: Hat matrix.y
: Response.fdataobj
: Functional explanatory data of classfdata
.a.est
: Intercept parameter estimated.x.fd
: Centered functional explanatory data of classfd
.basis.b
: Basis used for beta parameter estimation.lambda.opt
: A roughness penalty.Lfdobj
: Order of a derivative or a linear differential operator.P
: Penalty matrix.lm
: Returnlm
object.
Details
$$Y=\big<X,\beta\big>+\epsilon=\int_{T}{X(t)\beta(t)dt+\epsilon}$$ where \( \big< \cdot , \cdot \big>\) denotes the inner product on \(L_2\) and \(\epsilon\) are random errors with mean zero, finite variance \(\sigma^2\) and \(E[X(t)\epsilon]=0\).
The function uses the basis representation proposed by Ramsay and Silverman (2005) to model the
relationship between the scalar response and the functional covariate by
basis representation of the observed functional data
\(X(t)\approx\sum_{k=1}^{k_{n1}} c_k \xi_k(t)\) and the unknown
functional parameter \(\beta(t)\approx\sum_{k=1}^{k_{n2}} b_k
\phi_k(t)\).
The functional linear models estimated by the expression: $$\hat{y}=
\big< X,\hat{\beta} \big> =
C^{T}\psi(t)\phi^{T}(t)\hat{b}=\tilde{X}\hat{b}$$ where
\(\tilde{X}(t)=C^{T}\psi(t)\phi^{T}(t)\), and
\(\hat{b}=(\tilde{X}^{T}\tilde{X})^{-1}\tilde{X}^{T}y\)
and so,
\(\hat{y}=\tilde{X}\hat{b}=\tilde{X}(\tilde{X}^{T}\tilde{X})^{-1}\tilde{X}^{T}y=Hy\)
where \(H\) is the hat matrix with degrees of freedom: \(df=tr(H)\).
If \(\lambda>0\) then fregre.basis
incorporates a
roughness penalty:
\(\hat{y}=\tilde{X}\hat{b}=\tilde{X}(\tilde{X}^{T}\tilde{X}+\lambda
R_0)^{-1}\tilde{X}^{T}y= H_{\lambda}y\) where \(R_0\) is the penalty matrix.
This function allows covariates of class fdata
, matrix
,
data.frame
or directly covariates of class fd
. The function
also gives default values to arguments basis.x
and basis.b
for
representation on the basis of functional data \(X(t)\) and the functional
parameter \(\beta(t)\), respectively.
If basis=
NULL
creates the bspline
basis by
create.bspline.basis.
If the functional covariate
fdataobj
is a matrix or data.frame, it creates an object of class
"fdata" with default attributes, see fdata
.
If
basis.x$type=``fourier''
and basis.b$type=``fourier''
, the
basis are orthonormal and the function decreases the number of fourier basis
elements on the \(min(k_{n1},k_{n2})\), where
\(k_{n1}\) and \(k_{n2}\) are the number of basis element of
basis.x
and basis.b
respectively.
References
Ramsay, James O., and Silverman, Bernard W. (2006), Functional Data Analysis, 2nd ed., Springer, New York.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
See also
See Also as: fregre.basis.cv
,
summary.fregre.fd
and predict.fregre.fd
.
Alternative method: fregre.pc
and fregre.np
.
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Examples
if (FALSE) { # \dontrun{
# fregre.basis
data(tecator)
names(tecator)
absorp=tecator$absorp.fdata
ind=1:129
x=absorp[ind,]
y=tecator$y$Fat[ind]
tt=absorp[["argvals"]]
res1=fregre.basis(x,y)
summary(res1)
basis1=create.bspline.basis(rangeval=range(tt),nbasis=19)
basis2=create.bspline.basis(rangeval=range(tt),nbasis=9)
res5=fregre.basis(x,y,basis1,basis2)
summary(res5)
x.d2=fdata.deriv(x,nbasis=19,nderiv=1,method="bspline",class.out="fdata")
res7=fregre.basis(x.d2,y,basis1,basis2)
summary(res7)
} # }