Summary function for fregre.pc
, fregre.basis
,
fregre.pls
, fregre.np
and
fregre.plm
functions.
Shows:
-Call. | |
-R squared. | |
-Residual variance. | |
-Index of possible atypical curves or possible outliers. | |
-Index of possible influence curves. |
If the
fregre.fd
object comes from the fregre.pc
then shows:
-Variability of explicative variables explained by Principal Components. | |
-Variability for each principal components -PC-. |
If draw=TRUE plot:
-y vs y fitted values. | |
-Residuals vs fitted values. | |
-Standarized residuals vs fitted values. | |
-Levarage. | |
-Residual boxplot. | |
-Quantile-Quantile Plot (qqnorm). |
If ask
=FALSE draw graphs in
one window, by default. If ask
=TRUE, draw each graph in a window,
waiting to confirm.
Usage
# S3 method for class 'fregre.fd'
summary(object, times.influ = 3, times.sigma = 3, draw = TRUE, ...)
Value
Influence
: Vector of influence measures.i.influence
: Index of possible influence curves.i.atypical
: Index of possible atypical curves or possible outliers.
See also
Summary function for fregre.pc
,
fregre.basis
, fregre.pls
, fregre.np
and fregre.plm
.
Author
Manuel Febrero-Bande and Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Examples
if (FALSE) { # \dontrun{
# Ex 1. Simulated data
n= 200;tt= seq(0,1,len=101)
x0<-rproc2fdata(n,tt,sigma="wiener")
x1<-rproc2fdata(n,tt,sigma=0.1)
x<-x0*3+x1
beta = tt*sin(2*pi*tt)^2
fbeta = fdata(beta,tt)
y<-inprod.fdata(x,fbeta)+rnorm(n,sd=0.1)
# Functional regression
res=fregre.pc(x,y,l=c(1:5))
summary(res,3,ask=TRUE)
res2=fregre.pls(x,y,l=c(1:4))
summary(res2)
res3=fregre.pls(x,y)
summary(res3)
} # }