Tests for checking the equality of means and/or covariance between two populations under gaussianity.
Source:R/TestFunctions.R
fEqMoments.test.Rd
Two tests for the equality of means and covariances of two populations are provided. Both tests are constructed under gaussianity following Horvath & Kokoszka, 2012, Chapter 5.
Arguments
- X.fdata
fdata
object containing the curves from the first population.- Y.fdata
fdata
object containing the curves from the second population.- method
c("X2","Boot"). "X2" includes the asymptotic distribution. "Boot" computes the bootstrap approximation.
- npc
The number of principal components employed.
Ifnpc
is negative and 0<abs(npc)
<1, the number of components are determined for explaining, at least,abs(p)
% of variability.- alpha
Confidence level. By default =0.95.
- B
Number of bootstrap replicas when method="Boot".
- draw
By default,
FALSE
. Plots the density of the bootstrap replicas jointly with the statistic.
Value
Return a list with:
stat
: Value of the statistic.pvalue
: P-values for the test.vcrit
: Critical cutoff for rejecting the null hypothesis.p
: Degrees of freedom for X2 statistic.B
: Number of bootstrap replicas.
Details
fmean.test.fdata
computes the test for equality of means.
cov.test.fdata
computes the test for equality of covariance operators.
Both tests have asymptotic distributions under the null related with chi-square distribution. Also, a
parametric bootstrap procedure is implemented in both cases.
References
Inference for Functional Data with Applications. Horvath, L and Kokoszka, P. (2012). Springer.
See also
See Also as fanova.RPm, fanova.onefactor
.
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.febrero@usc.es
Examples
if (FALSE) { # \dontrun{
tt=seq(0,1,len=51)
bet=0
mu1=fdata(10*tt*(1-tt)^(1+bet),tt)
mu2=fdata(10*tt^(1+bet)*(1-tt),tt)
fsig=1
X=rproc2fdata(100,tt,mu1,sigma="vexponential",par.list=list(scale=0.2,theta=0.35))
Y=rproc2fdata(100,tt,mu2,sigma="vexponential",par.list=list(scale=0.2*fsig,theta=0.35))
fmean.test.fdata(X,Y,npc=-.98,draw=TRUE)
cov.test.fdata(X,Y,npc=5,draw=TRUE)
bet=0.1
mu1=fdata(10*tt*(1-tt)^(1+bet),tt)
mu2=fdata(10*tt^(1+bet)*(1-tt),tt)
fsig=1.5
X=rproc2fdata(100,tt,mu1,sigma="vexponential",par.list=list(scale=0.2,theta=0.35))
Y=rproc2fdata(100,tt,mu2,sigma="vexponential",par.list=list(scale=0.2*fsig,theta=0.35))
fmean.test.fdata(X,Y,npc=-.98,draw=TRUE)
cov.test.fdata(X,Y,npc=5,draw=TRUE)
} # }