One–way anova model for k independent samples of functional data. The function contrasts the null hypothesis of equality of mean functions of functional data based on the an asymptotic version of the anova F–test. $$H_0:\, m_1=\ldots=m_k$$
Arguments
- object
functional response data. fdata class object with
n
curves.- group
a factor specifying the class for each curve.
- nboot
number of bootstrap samples.
- plot
if
TRUE
, plot the mean of each factor level and the results of test.- verbose
if
TRUE
, print intermediate results.- ...
further arguments passed to or from other methods.
Value
Returns:
p-value
: Probability of rejecting the null hypothesis H0 at a significance level.stat
: Statistic value of the test.wm
: Statistic values of bootstrap resamples.
References
Cuevas, A., Febrero, M., & Fraiman, R. (2004). An anova test for functional data. Computational statistics & data analysis, 47(1), 111-122.
See also
See Also as: fanova.RPm
Author
Juan A. Cuesta-Albertos, Manuel Febrero-Bande, Manuel Oviedo de la
Fuente
manuel.oviedo@udc.es
Examples
if (FALSE) { # \dontrun{
data(MCO)
grupo<-MCO$classintact
datos<-MCO$intact
res=fanova.onefactor(datos,grupo,nboot=50,plot=TRUE)
grupo <- MCO$classpermea
datos <- MCO$permea
res=fanova.onefactor(datos,grupo,nboot=50,plot=TRUE)
} # }