Estimate the beta parameter by wild or smoothed bootstrap procedure
Usage
fregre.bootstrap(
model,
nb = 500,
wild = TRUE,
type.wild = "golden",
newX = NULL,
smo = 0.1,
smoX = 0.05,
alpha = 0.95,
kmax.fix = FALSE,
draw = TRUE,
...
)Arguments
- model
fregre.pc,fregre.plsorfregre.basisobject.- nb
Number of bootstrap samples.
- wild
Naive or smoothed bootstrap depending of the
smoandsmoXparameters.- type.wild
Type of distribution of V in wild bootstrap procedure, see
rwild.- newX
A
fdataclass containing the values of the model covariates at which predictions are required (only for smoothed bootstrap).- smo
If \(>0\), smoothed bootstrap on the residuals (proportion of response variance).
- smoX
If \(>0\), smoothed bootstrap on the explanatory functional variable
fdata(proportion of variance-covariance matrix offdataobject.- alpha
Significance level used for graphical option,
draw=TRUE.- kmax.fix
The number of maximum components to consider in each bootstrap iteration. =TRUE, the bootstrap procedure considers the same number of components used in the previous fitted model. =FALSE, the bootstrap procedure estimates the best components in each iteration.
- draw
=TRUE, plot the bootstrap estimated beta, and (optional) the CI for the predicted response values.
- ...
Further arguments passed to or from other methods.
Value
Return:
model:fregre.pc,fregre.plsorfregre.basisobject.beta.boot: Functional beta estimated by thenbbootstrap regressions.norm.boot: Norm of differences between thenbootbetas estimated by bootstrap and beta estimated by the regression model.coefs.boot: Matrix with the bootstrap estimated basis coefficients.kn.boot: Vector or list of lengthnbwith index of the basis, PC or PLS factors selected in each bootstrap regression.y.pred: Predicted response values usingnewXcovariates.y.boot: Matrix of bootstrap predicted response values usingnewXcovariates.newX: Afdataclass containing the values of the model covariates at which predictions are required (only for smoothed bootstrap).
Details
Estimate the beta parameter by wild or smoothed bootstrap procedure using
principal components representation fregre.pc, Partial least
squares components (PLS) representation fregre.pls or basis
representation fregre.basis.
If a new curves are in
newX argument the bootstrap method estimates the response using the
bootstrap resamples.
If the model exhibits heteroskedasticity, the use of wild bootstrap procedure is recommended (by default).
References
Febrero-Bande, M., Galeano, P. and Gonzalez-Manteiga, W. (2010). Measures of influence for the functional linear model with scalar response. Journal of Multivariate Analysis 101, 327-339.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
See also
See Also as: fregre.pc, fregre.pls,
fregre.basis, .
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Examples
if (FALSE) { # \dontrun{
data(tecator)
iest<-1:165
x=tecator$absorp.fdata[iest]
y=tecator$y$Fat[iest]
nb<-25 ## Time-consuming
res.pc=fregre.pc(x,y,1:6)
# Fix the compontents used in the each regression
res.boot1=fregre.bootstrap(res.pc,nb=nb,wild=FALSE,kmax.fix=TRUE)
# Select the "best" compontents used in the each regression
res.boot2=fregre.bootstrap(res.pc,nb=nb,wild=FALSE,kmax.fix=FALSE)
res.boot3=fregre.bootstrap(res.pc,nb=nb,wild=FALSE,kmax.fix=10)
## predicted responses and bootstrap confidence interval
newx=tecator$absorp.fdata[-iest]
res.boot4=fregre.bootstrap(res.pc,nb=nb,wild=FALSE,newX=newx,draw=TRUE)
} # }