Skip to contents

Represent integrate kernels: normal, cosine, triweight, quartic and uniform.

Usage

Kernel.integrate(u, Ker = Ker.norm, a = -1)

Arguments

u

data

Ker

Type of Kernel. By default normal kernel.

a

Lower limit of integration.

Value

Returns integrate kernel.

Details

Type of integrate kernel:

Integrate Normal Kernel: IKer.norm
Integrate Cosine Kernel: IKer.cos
Integrate Epanechnikov Kernel: IKer.epa
Integrate Triweight Kernel: IKer.tri
Integrate Quartic Kernel: IKer.quar
Integrate Uniform Kernel: IKer.unif

References

Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.

Hardle, W. Applied Nonparametric Regression. Cambridge University Press, 1994.

See also

See Also as: Kernel and integrate.

Author

Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es

Examples

y=qnorm(seq(.1,.9,len=100))
d=IKer.tri(y)
e=IKer.cos(y)
e2=Kernel.integrate(u=y,Ker=Ker.cos)
e-e2
#>   [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [38] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [75] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f=IKer.epa(y)
f2=Kernel.integrate(u=y,Ker=Ker.epa)
f-f2
#>   [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [38] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [75] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
plot(d,type="l",ylab="Integrate Kernel")
lines(e,col=2,type="l")
lines(f,col=4,type="l")