The predictions for the functional generalized least squares fitted linear
model represented by object
are obtained at the covariate values
defined in newx
.
Arguments
- object
fregre.gls
object.- newx
An optional data list in which to look for variables with which to predict. If omitted, the fitted values are used. List of new explanatory data.
- type
Type of prediction (response or model term).
- se.fit
=TRUE (not default) standard error estimates are returned for each prediction.
- scale
Scale parameter for std.err. calculation.
- df
Degrees of freedom for scale.
- interval
Type of interval calculation.
- ...
Further arguments passed to or from other methods.
- data
Data frame with the time or spatinal index
- weights
variance weights for prediction. This can be a numeric vector or a one-sided model formula. In the latter case, it is interpreted as an expression evaluated in newdata
- pred.var
the variance(s) for future observations to be assumed for prediction intervals. See
link{predict.lm}
for more details.- n.ahead
number of steps ahead at which to predict.
References
Oviedo de la Fuente, M., Febrero-Bande, M., Pilar Munoz, and Dominguez, A. Predicting seasonal influenza transmission using Functional Regression Models with Temporal Dependence. https://arxiv.org/abs/1610.08718
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Examples
if (FALSE) { # \dontrun{
data(tecator)
ind<-1:190
x <-fdata.deriv(tecator$absorp.fdata,nderiv=1)
dataf=as.data.frame(tecator$y)
dataf$itime <- 1:nrow(x)
ldat=list("df"=dataf[ind,],"x"=x[ind])
newldat=list("df"=dataf[-ind,],"x"=x[-ind])
newy <- tecator$y$Fat[-ind]
ff <- Fat ~ x
res.lm <- fregre.lm(ff,data=ldat)
summary(res.lm)
res.gls <- fregre.gls(ff,data=ldat, correlation=corAR1())
summary(res.gls)
par.cor <- list("cor.ARMA"=list("p"=1))
par.cor <- list("cor.ARMA"=list("index"=c("itime"),"p"=1))
res.igls <- fregre.igls(ff,data=ldat,correlation=par.cor)
pred.lm <- predict(res.lm,newldat)
pred.gls <- predict(res.gls,newldat)
pred.igls <- predict(res.igls,newldat)
mean((pred.lm-newldat$df$Fat)^2)
mean((pred.gls-newldat$df$Fat)^2)
mean((pred.igls-newldat$df$Fat)^2)
} # }