This function fits a functional linear model using generalized least squares. The errors are allowed to be correlated and/or have unequal variances.
Arguments
- formula
a two-sided linear formula object describing the model, with the response on the left of a
~
operator and the terms, separated by+
operators, on the right.- data
an optional data frame containing the variables named in
model
,correlation
,weights
, andsubset
. By default the variables are taken from the environment from whichgls
is called.- correlation
an optional corStruct object describing the within-group correlation structure. See the documentation of corClasses for a description of the available
corStruct
classes. If a grouping variable is to be used, it must be specified in theform
argument to thecorStruct
constructor. Defaults toNULL
, corresponding to uncorrelated errors.- basis.x
List of basis for functional explanatory data estimation.
- basis.b
List of basis for \(\beta(t)\) parameter estimation.
- rn
List of Ridge parameter.
- lambda
List of Roughness penalty parameter.
- weights
an optional varFunc object or one-sided formula describing the within-group heteroscedasticity structure. If given as a formula, it is used as the argument to varFixed, corresponding to fixed variance weights. See the documentation on varClasses for a description of the available varFunc classes. Defaults to
NULL
, corresponding to homoscedastic errors.- subset
an optional expression indicating which subset of the rows of
data
should be used in the fit. This can be a logical vector, or a numeric vector indicating which observation numbers are to be included, or a character vector of the row names to be included. All observations are included by default.- method
a character string. If
"REML"
the model is fit by maximizing the restricted log-likelihood. If"ML"
the log-likelihood is maximized. Defaults to"REML"
.- control
a list of control values for the estimation algorithm to replace the default values returned by the function glsControl. Defaults to an empty list.
- verbose
an optional logical value. If
TRUE
information on the evolution of the iterative algorithm is printed. Default isFALSE
.- criteria
GCCV criteria, see
GCCV.S
.- ...
some methods for this generic require additional arguments. None are used in this method.
Value
An object of class "gls"
representing the functional linear
model fit. Generic functions such as print
, plot
, and
summary
have methods to show the results of the fit.
See glsObject for the components of the fit. The functions
resid
, coef
, and fitted
can be
used to extract some of its components.
Besides, the class(z) is "gls", "lm", and "fregre.lm" with the following
objects:
sr2
: Residual variance.Vp
: Estimated covariance matrix for the parameters.lambda
: A roughness penalty.basis.x
: Basis used forfdata
orfd
covariates.basis.b
: Basis used for beta parameter estimation.beta.l
: List of estimated beta parameter of functional covariates.data
: List containing the variables in the model.formula
: Formula used in the adjusted model.formula.ini
: Formula in call.W
: Inverse of covariance matrix.correlation
: SeeglsObject
for the components of the fit.
References
Oviedo de la Fuente, M., Febrero-Bande, M., Pilar Munoz, and Dominguez, A. (2018). Predicting seasonal influenza transmission using functional regression models with temporal dependence. PloS one, 13(4), e0194250. doi:10.1371/journal.pone.0194250
Examples
if (FALSE) { # \dontrun{
data(tecator)
x=tecator$absorp.fdata
x.d2<-fdata.deriv(x,nderiv=)
tt<-x[["argvals"]]
dataf=as.data.frame(tecator$y)
# plot the response
plot(ts(tecator$y$Fat))
nbasis.x=11;nbasis.b=7
basis1=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.x)
basis2=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.b)
basis.x=list("x.d2"=basis1)
basis.b=list("x.d2"=basis2)
ldata=list("df"=dataf,"x.d2"=x.d2)
res.gls=fregre.gls(Fat~x.d2,data=ldata, correlation=corAR1(),
basis.x=basis.x,basis.b=basis.b)
summary(res.gls)
} # }