Estimate the quantile of measures of influence for each observation.
Arguments
- model
fregre.pc,fregre.basisorfregre.basis.cvobject.- out.influ
inflluence.fdbject- mue.boot
Number of bootstrap samples
- smo
Smoothing parameter as a proportion of response variance.
- smoX
Smoothing parameter for
fdataobject as a proportion of variance-covariance matrix of the explanatory functional variable.- alpha
Significance level.
- kmax.fix
The maximum number of principal comoponents or number of basis is fixed by
modelobject.- ...
Further arguments passed to or from other methods.
Value
Return:
quan.cook.for: Distance Cook Prediction Quantile.quan.cook.est: Distance Cook Estimation Quantile.quan.cook.Pena: Pena Distance Quantile.mues.est: Sample Cook generated.mues.pena: Sample Pena generated.beta.boot: Functional beta estimated by bootstrap method.
Details
Compute the quantile of measures of influence estimated in
influence.fregre.fd for functional regression using principal
components representation (fregre.pc) or basis
representation
(fregre.basis or
fregre.basis.cv).
A smoothed bootstrap method is used to estimate the quantiles of the influence measures, which allows to point out which observations have the larger influence on estimation and prediction.
References
Febrero-Bande, M., Galeano, P. and Gonzalez-Manteiga, W. (2010). Measures of influence for the functional linear model with scalar response. Journal of Multivariate Analysis 101, 327-339.
See also
See Also as: influence.fregre.fd,
fregre.basis, fregre.pc.
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Examples
if (FALSE) { # \dontrun{
data(tecator)
x=tecator$absorp.fdata
y=tecator$y$Fat
res=fregre.pc(x,y,1:6)
#time consuming
res.infl=influence.fregre.fd(res)
resquan=influence_quan(res,res.infl,4,0.01,0.05,0.95)
plot(res.infl$betas,type="l",col=2)
lines(res$beta.est,type="l",col=3)
lines(resquan$betas.boot,type="l",col="gray")
res=fregre.basis(x,y)
res.infl=influence.fregre.fd(res)
resquan=influence_quan(res,res.infl,mue.boot=4,kmax.fix=T)
plot(resquan$betas.boot,type="l",col=4)
lines(res.infl$betas,type="l",col=2)
lines(resquan$betas.boot,type="l",col="gray")
} # }