Provides the smoothing matrix S
with roughness penalties.
Arguments
- tt
Discretization points.
- basis
Basis to use. See create.basis.
- lambda
A roughness penalty. By default, no penalty
lambda
=0.- Lfdobj
See eval.penalty.
- w
Optional case weights.
- ...
Further arguments passed to or from other methods. Arguments to be passed by default to create.basis
Details
Provides the smoothing matrix S for the discretization points tt
and
bbasis
with roughness penalties. If lambda=0
is not used
penalty, else a basis roughness penalty matrix is caluclated using
getbasispenalty.
References
Ramsay, James O. and Silverman, Bernard W. (2006). Functional Data Analysis, 2nd ed., Springer, New York.
Wasserman, L. All of Nonparametric Statistics. Springer Texts in Statistics, 2006.
See also
See Also as S.np
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Examples
if (FALSE) { # \dontrun{
np=101
tt=seq(0,1,len=np)
nbasis=11
base1 <- create.bspline.basis(c(0, np), nbasis)
base2 <- create.fourier.basis(c(0, np), nbasis)
S1<-S.basis(tt,basis=base1,lambda=3)
image(S1)
S2<-S.basis(tt,basis=base2,lambda=3)
image(S2)
} # }