Smoothing of functional data using nonparametric kernel estimation with cross-validation (CV) or generalized cross-validation (GCV) methods.
Arguments
- fdataobj
fdata
class object.- h
Smoothing parameter or bandwidth.
- W
Matrix of weights.
- Ker
Type of kernel used, by default normal kernel.
- type.CV
Type of cross-validation. By default generalized cross-validation (GCV) method. Possible values are GCV.S and CV.S
- type.S
Type of smothing matrix
S
. By defaultS
is calculated by Nadaraya-Watson kernel estimator (S.NW
). Possible values areS.KNN
,S.LLR
,S.LPR
andS.LCR
.- par.CV
List of parameters for type.CV:
trim
, the alpha of the trimming anddraw=TRUE
- par.S
List of parameters for
type.S
:tt
for argvals,h
for bandwidth,Ker
for kernel, etc.- correl
logical. If
TRUE
the bandwidth parameterh
is computed following the procedure described for De Brabanter et al. (2018). (option avalaible since v1.6.0 version)- verbose
If
TRUE
information about GCV values and input parameters is printed. Default isFALSE
.- ...
Further arguments passed to or from other methods. Arguments to be passed for kernel method.
Value
Returns GCV or CV values calculated for input parameters.
gcv
: GCV or CV for a vector of values of the smoothing parameterh
.fdataobj
:fdata
class object.fdata.est
: Estimatedfdata
class object.h.opt
:h
value that minimizes CV or GCV method.S.opt
: Smoothing matrix for the minimum CV or GCV method.gcv.opt
: Minimum of CV or GCV method.h
: Smoothing parameter or bandwidth.
Details
Calculate the minimum GCV for a vector of values of the smoothing parameter
h
.
Nonparametric smoothing is performed by the kernel function.
The type of kernel to use with the parameter Ker
and the type of
smothing matrix S
to use with the parameter type.S
can be
selected by the user, see function Kernel
.
W is the matrix of weights of the discretization points.
References
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
Wasserman, L. All of Nonparametric Statistics. Springer Texts in Statistics, 2006.
Hardle, W. Applied Nonparametric Regression. Cambridge University Press, 1994.
De Brabanter, K., Cao, F., Gijbels, I., Opsomer, J. (2018). Local polynomial regression with correlated errors in random design and unknown correlation structure. Biometrika, 105(3), 681-69.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
See also
Alternative method: optim.basis
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Examples
if (FALSE) { # \dontrun{
# Exemple, phoneme DATA
data(phoneme)
mlearn<-phoneme$learn[1:100]
out1<-optim.np(mlearn,type.CV=CV.S,type.S=S.NW)
np<-ncol(mlearn)
# variance calculations
y<-mlearn
out<-out1
i<-1
z=qnorm(0.025/np)
fdata.est<-out$fdata.est
tt<-y[["argvals"]]
var.e<-Var.e(y,out$S.opt)
var.y<-Var.y(y,out$S.opt)
var.y2<-Var.y(y,out$S.opt,var.e)
# plot estimated fdata and point confidence interval
upper.var.e<-fdata.est[i,]-z*sqrt(diag(var.e))
lower.var.e<-fdata.est[i,]+z*sqrt(diag(var.e))
dev.new()
plot(y[i,],lwd=1,
ylim=c(min(lower.var.e$data),max(upper.var.e$data)),xlab="t")
lines(fdata.est[i,],col=gray(.1),lwd=1)
lines(fdata.est[i,]+z*sqrt(diag(var.y)),col=gray(0.7),lwd=2)
lines(fdata.est[i,]-z*sqrt(diag(var.y)),col=gray(0.7),lwd=2)
lines(upper.var.e,col=gray(.3),lwd=2,lty=2)
lines(lower.var.e,col=gray(.3),lwd=2,lty=2)
legend("bottom",legend=c("Var.y","Var.error"),
col = c(gray(0.7),gray(0.3)),lty=c(1,2))
} # }