Procedure for detecting funcitonal outliers.
Usage
outliers.depth.pond(
fdataobj,
nb = 200,
smo = 0.05,
quan = 0.5,
dfunc = depth.mode,
...
)
outliers.depth.trim(
fdataobj,
nb = 200,
smo = 0.05,
trim = 0.01,
quan = 0.5,
dfunc = depth.mode,
...
)
outliers.lrt(fdataobj, nb = 200, smo = 0.05, trim = 0.1, ...)
outliers.thres.lrt(fdataobj, nb = 200, smo = 0.05, trim = 0.1, ...)
Arguments
- fdataobj
fdata
class object.- nb
The number of bootstrap samples.
- smo
The smoothing parameter for the bootstrap samples.
- quan
Quantile to determine the cutoff from the Bootstrap procedure (by default=0.5)
- dfunc
Type of depth measure, by default
depth.mode
.- ...
Further arguments passed to or from other methods.
- trim
The alpha of the trimming.
Value
outliers
Indexes of functional outlier.
dep.out
Depth value of functional outlier.
dep.out
Iteration in which the functional outlier is detected.
quantile
Threshold for outlier detection.
dep
Depth value of functional data.
Details
Outlier detection in functional data by likelihood ratio test (outliers.lrt
). The threshold for outlier detection is given by the
outliers.thres.lrt
.
Outlier detection in functional data by depth measures:
outliers.depth.pond
: function weights the data according to depth.outliers.depth.trim
: function uses trimmed data.
quantile_outliers_pond
and quantile_outliers_trim
functions provides
the quantiles of the bootstrap samples for functional outlier detection by,
respectively, weigthed and trimmed procedures. Bootstrap smoothing function
(fdata.bootstrap
with nb
resamples) is applied to these
weighted or trimmed data. If smo=0
smoothed bootstrap is not performed.
The function returns a vector of size 1
xnb
with bootstrap replicas of the quantile.
References
Cuevas A, Febrero M, Fraiman R. 2006. On the use of bootstrap for estimating functions with functional data. Computational Statistics and Data Analysis 51: 1063-1074.
Febrero-Bande, M., Galeano, P., and Gonzalez-Manteiga, W. (2008). Outlier detection in functional data by depth measures with application to identify abnormal NOx levels. Environmetrics 19, 4, 331–345.
Febrero-Bande, M., Galeano, P. and Gonzalez-Manteiga, W. (2007). A functional analysis of NOx levels: location and scale estimation and outlier detection. Computational Statistics 22, 3, 411-427.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
See also
See Also: fdata.bootstrap
, Depth
.
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es