provides bootstrap samples for functional data.
Usage
fdata.bootstrap(
fdataobj,
statistic = func.mean,
alpha = 0.05,
nb = 200,
smo = 0,
draw = FALSE,
draw.control = NULL,
...
)
Arguments
- fdataobj
fdata
class object.- statistic
Sample statistic. It must be a function that returns an object of class
fdata
. By default, it uses sample meanfunc.mean
. SeeDescriptive
for other statistics.- alpha
Significance value.
- nb
Number of bootstrap resamples.
- smo
The smoothing parameter for the bootstrap samples as a proportion of the sample variance matrix.
- draw
If
TRUE
, plot the bootstrap samples and the statistic.- draw.control
List that it specifies the
col
,lty
andlwd
for objects:fdataobj
,statistic
,IN
andOUT
.- ...
Further arguments passed to or from other methods.
Value
statistic
:fdata
class object with the statistic estimate fromnb
bootstrap samples.dband
: Bootstrap estimate of(1-alpha)%
distance.rep.dist
: Distance from every replicate.resamples
:fdata
class object with the bootstrap resamples.fdataobj
:fdata
class object.
Details
The fdata.bootstrap
computes a confidence ball using bootstrap in
the following way:
Let \(X_1(t),\ldots,X_n(t)\) be the original data and \(T=T(X_1(t),\ldots,X_n(t))\) be the sample statistic.
Calculate the
nb
bootstrap resamples \(\left\{X_{1}^{*}(t),\cdots,X_n^*(t)\right\}\), using the following scheme: $$X_i^*(t)=X_i(t)+Z(t)$$ where \(Z(t)\) is normally distributed with mean 0 and covariance matrix \(\gamma\Sigma_x\), where \(\Sigma_x\) is the covariance matrix of \(\left\{X_1(t),\ldots,X_n(t)\right\}\) and \(\gamma\) is the smoothing parameter.Let \(T^{*j}=T(X^{*j}_1(t),...,X^{*j}_n(t))\) be the estimate using the \(j\) resample.
Compute \(d(T,T^{*j})\), \(j=1,\ldots,nb\). Define the bootstrap confidence ball of level \(1-\alpha\) as \(CB(\alpha)=X\in E\) such that \(d(T,X)\leq d_{\alpha}\) being \(d_{\alpha}\) the quantile \((1-\alpha)\) of the distances between the bootstrap resamples and the sample estimate.
The fdata.bootstrap
function allows us to define a statistic
calculated on the nb
resamples, control the degree of smoothing by
smo
argument and represent the confidence ball with level
\(1-\alpha\) as those resamples that fulfill the condition of
belonging to \(CB(\alpha)\). The statistic
used by
default is the mean (func.mean
) but also other depth-based
functions can be used (see help(Descriptive)
).
References
Cuevas A., Febrero-Bande, M. and Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics 22, 3: 481-496.
Cuevas A., Febrero-Bande, M., Fraiman R. 2006. On the use of bootstrap for estimating functions with functional data. Computational Statistics and Data Analysis 51: 1063-1074.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
See also
See Also as Descriptive
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Examples
if (FALSE) { # \dontrun{
data(tecator)
absorp<-tecator$absorp.fdata
# Time consuming
#Bootstrap for Trimmed Mean with depth mode
out.boot=fdata.bootstrap(absorp,statistic=func.trim.FM,nb=200,draw=TRUE)
names(out.boot)
#Bootstrap for Median with with depth mode
control=list("col"=c("grey","blue","cyan"),"lty"=c(2,1,1),"lwd"=c(1,3,1))
out.boot=fdata.bootstrap(absorp,statistic=func.med.mode,
draw=TRUE,draw.control=control)
} # }