Descriptive measures for functional data.
Source:R/Descriptive.R
, R/func.mean.formula.r
Descriptive.Rd
Central and dispersion measures for functional data.
Usage
func.mean(x)
func.var(fdataobj)
func.trim.FM(fdataobj, ...)
func.trim.mode(fdataobj, ...)
func.trim.RP(fdataobj, ...)
func.trim.RT(fdataobj, ...)
func.trim.RPD(fdataobj, ...)
func.med.FM(fdataobj, ...)
func.med.mode(fdataobj, ...)
func.med.RP(fdataobj, ...)
func.med.RT(fdataobj, ...)
func.med.RPD(fdataobj, ...)
func.trimvar.FM(fdataobj, ...)
func.trimvar.mode(fdataobj, ...)
func.trimvar.RP(fdataobj, ...)
func.trimvar.RPD(fdataobj, ...)
func.trim.RT(fdataobj, ...)
func.med.RT(fdataobj, ...)
func.trimvar.RT(fdataobj, ...)
func.mean.formula(formula, data = NULL, ..., drop = FALSE)
Arguments
- x
- fdataobj
fdata
class object.- ...
Further arguments passed to or from other methods. If the argument
p
is passed, it usedmetric.lp
function, by defaultp=2
.
If the argumenttrim
(alpha of the trimming) is passed, it usedmetric.lp
function.
If the argumentderiv
(number of derivatives to use) is passed. This parameter is used indepth.RPD
function, by default it usesderiv =(0,1)
.- formula
a formula, such as y ~ group, where y is a fdata object to be split into groups according to the grouping variable group (usually a factor).
- data
List that containing the variables in the formula. The item called "df" is a data frame with the grouping variable. The item called "y" is a fdata object.
- drop
logical indicating if levels that do not occur should be dropped (if f is a factor or a list).
Value
func.mean.formula
The value returned from split is a
list of fdata containing the mean curves
for the groups. The components
of the list are named by the levels of f (after converting to a factor, or
if already a factor and drop = TRUE, dropping unused levels).
func.mean gives mean curve. | |
func.var gives variance curve. | |
func.trim.FM Returns the average from the (1-trim) %
deepest curves following FM criteria. | |
func.trim.mode
Returns the average from the (1-trim) % deepest curves following mode
criteria. | |
func.trim.RP Returns the average from the
(1-trim) % deepest curves following RP criteria. | |
func.trim.RT Returns the average from the (1-trim) %
deepest curves following RT criteria. | |
func.trim.RPD
Returns the average from the (1-trim) % deepest curves following RPD
criteria. | |
func.med.FM Returns the deepest curve
following FM criteria. | |
func.med.mode Returns the
deepest curve following mode criteria. | |
func.med.RP
Returns the deepest curve following RP criteria. | |
func.med.RPD Returns the deepest curve following RPD criteria. | |
func.trimvar.FM Returns the marginal variance from
the deepest curves followinng FM criteria. | |
func.trimvar.mode Returns the marginal variance from the
deepest curves followinng mode criteria. | |
func.trimvar.RP Returns the marginal variance from the deepest
curves followinng RP criteria. | |
func.trimvar.RT
Returns the marginal variance from the deepest curves followinng RT
criteria. | |
func.trimvar.RPD Returns the marginal
variance from the deepest curves followinng RPD criteria. |
References
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Examples
if (FALSE) { # \dontrun{
#' # Example with Montreal Daily Temperature (fda-package)
fdataobj<-fdata(MontrealTemp)
# Measures of central tendency by group
fac<-factor(c(rep(1,len=17),rep(2,len=17)))
ldata=list("df"=data.frame(fac),"fdataobj"=fdataobj)
a1<-func.mean.formula(fdataobj~fac,data=ldata)
plot(a1)
# Measures of central tendency
a1<-func.mean(fdataobj)
a2<-func.trim.FM(fdataobj)
a3<-func.trim.mode(fdataobj)
a4<-func.trim.RP(fdataobj)
# a5<-func.trim.RPD(fdataobj,deriv=c(0,1)) # Time-consuming
a6<-func.med.FM(fdataobj)
a7<-func.med.mode(fdataobj)
a8<-func.med.RP(fdataobj)
# a9<-func.med.RPD(fdataobj,deriv=c(0,1)) # Time-consuming
# a10<-func.med.RT(fdataobj)
par(mfrow=c(1,2))
plot(c(a1,a2,a3,a4),ylim=c(-26,29),main="Central tendency: trimmed mean")
plot(c(a1,a6,a7,a8),ylim=c(-26,29),main="Central tendency: median")
## Measures of dispersion
b1<-func.var(fdataobj)
b2<-func.trimvar.FM(fdataobj)
b3<-func.trimvar.FM(fdataobj,trim=0.1)
b4<-func.trimvar.mode(fdataobj)
b5<-func.trimvar.mode(fdataobj,p=1)
b6<-func.trimvar.RP(fdataobj)
b7<-func.trimvar.RPD(fdataobj)
b8<-func.trimvar.RPD(fdataobj)
b9<-func.trimvar.RPD(fdataobj,deriv=c(0,1))
dev.new()
par(mfrow=c(1,2))
plot(c(b1,b2,b3,b4,b5),ylim=c(0,79),main="Measures of dispersion I")
plot(c(b1,b6,b7,b8,b9),ylim=c(0,79),main="Measures of dispersion II")
} # }