Several depth measures can be computed for functional data for descriptive or classification purposes.
Usage
depth.mode(
fdataobj,
fdataori = fdataobj,
trim = 0.25,
metric = metric.lp,
h = NULL,
scale = FALSE,
draw = FALSE,
...
)
depth.RP(
fdataobj,
fdataori = fdataobj,
trim = 0.25,
nproj = 50,
proj = "vexponential",
dfunc = "TD1",
par.dfunc = list(),
scale = FALSE,
draw = FALSE,
...
)
depth.RPD(
fdataobj,
fdataori = fdataobj,
nproj = 20,
proj = 1,
deriv = c(0, 1),
trim = 0.25,
dfunc2 = mdepth.LD,
method = "fmm",
draw = FALSE,
...
)
depth.RT(
fdataobj,
fdataori = fdataobj,
trim = 0.25,
nproj = 10,
proj = 1,
xeps = 1e-07,
draw = FALSE,
...
)
depth.KFSD(
fdataobj,
fdataori = fdataobj,
trim = 0.25,
h = NULL,
scale = FALSE,
draw = FALSE
)
depth.FSD(
fdataobj,
fdataori = fdataobj,
trim = 0.25,
scale = FALSE,
draw = FALSE
)
depth.FM(
fdataobj,
fdataori = fdataobj,
trim = 0.25,
scale = FALSE,
dfunc = "FM1",
par.dfunc = list(scale = TRUE),
draw = FALSE
)
Arguments
- fdataobj
The set of new curves to evaluate the depth.
fdata
class object.- fdataori
The set of reference curves respect to which the depth is computed.
fdata
class object.- trim
The alpha of the trimming.
- metric
Metric function, by default
metric.lp
. Distance matrix betweenfdataobj
andfdataori
.- h
Bandwidth,
h>0
. Default argument values are provided as the 15%–quantile of the distance betweenx
andxx
.- scale
=TRUE, the depth is scaled respect to depths in
fdataori
.- draw
=TRUE, draw the curves, the sample median and trimmed mean.
- ...
Further arguments passed to or from other methods. For
depth.mode
parameters formetric
. For random projection depths, parameters to be included inrproc2fdata
not included before.- nproj
The number of projections. Ignored if a
fdata
class object is provided inproj
- proj
if a
fdata
class, projections provided by the user. Otherwise, it is thesigma
parameter ofrproc2fdata
function.- dfunc
type of univariate depth function used inside depth function: "FM1" refers to the original Fraiman and Muniz univariate depth (default), "TD1" Tukey (Halfspace),"Liu1" for simplical depth, "LD1" for Likelihood depth and "MhD1" for Mahalanobis 1D depth. Also, any user function fulfilling the following pattern
FUN.USER(x,xx,...)
and returning adep
component can be included.f- par.dfunc
List of parameters for dfunc.
- deriv
Number of derivatives described in integer vector
deriv
.=0
means no derivative.- dfunc2
Multivariate depth function (second step depth function) in RPD depth, by default
mdepth.LD
. Any user function with the patternFUN.USER(x,xx,...)
can be employed.- method
Type of derivative method. See
fdata.deriv
for more details.numeric
: the procedure considers the argument value as the bandwidth.NULL
: (by default) the bandwidth is provided as the 15%–quantile of the distance among curves offdataori
.character
: a string (like"0.15"
), the procedure reads the numeric value and consider it as the quantile of the distance infdataori
(as in the second case).
- xeps
Accuracy. The left limit of the empirical distribution function.
Value
Return a list with:
median
: Deepest curve.lmed
: Index deepest elementmedian
.mtrim
:fdata
class object with the average from the(1-trim)%
deepest curves.ltrim
: Indexes of curves that conform the trimmed meanmtrim
.dep
: Depth of each curve of fdataobj w.r.t. fdataori.dep.ori
: Depth of each curve of fdataori w.r.t. fdataori.proj
: The projection value of each point on the curves.dist
: Distance matrix between curves or functional data.
Details
Type of depth functions: Fraiman and Muniz (FM) depth, modal depth, random Tukey (RT), random projection (RP) depth and double random projection depth (RPD).
depth.FM
: computes the integration of an univariate depth along the axis x (see Fraiman and Muniz 2001). It is also known as Integrated Depth.depth.mode
: implements the modal depth (see Cuevas et al 2007).depth.RT
: implements the Random Tukey depth (see Cuesta–Albertos and Nieto–Reyes 2008).depth.RP
: computes the Random Projection depth (see Cuevas et al. 2007).depth.RPD
: implements a depth measure based on random projections possibly using several derivatives (see Cuevas et al. 2007).depth.FSD
: computes the Functional Spatial Depth (see Sguera et al. 2014).depth.KFSD
: implements the Kernelized Functional Spatial Depth (see Sguera et al. 2014).
depth.mode
: calculates the depth of a datum accounting the number of curves in its neighbourhood. By default, the distance is calculated usingmetric.lp
function although any other distance could be employed through argumentmetric
(with the general patternUSER.DIST(fdataobj,fdataori)
).depth.RP
: summarizes the random projections through averages whereas thedepth.RT
function uses the minimum of all projections.depth.RPD
: involves the original trajectories and the derivatives of each curve in two steps. It builds random projections for the function and their derivatives (indicated in the parameterderiv
) and then applies a depth function (by defaultdepth.mode
) to this set of random projections (by default the Tukey one).depth.FSD
anddepth.KFSD
: are the implementations of the default versions of the functional spatial depths proposed in Sguera et al 2014. At this moment, it is not possible to change the kernel in the second one.
References
Cuevas, A., Febrero-Bande, M., Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics 22, 3, 481-496.
Fraiman R, Muniz G. (2001). Trimmed means for functional data. Test 10: 419-440.
Cuesta–Albertos, JA, Nieto–Reyes, A. (2008) The Random Tukey Depth. Computational Statistics and Data Analysis Vol. 52, Issue 11, 4979-4988.
Febrero-Bande, M, Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
Sguera C, Galeano P, Lillo R (2014). Spatial depth based classification for functional data. TEST 23(4):725–750.
See also
See Also as Descriptive
.
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Examples
if (FALSE) { # \dontrun{
#Ex: CanadianWeather data
tt=1:365
fdataobj<-fdata(t(CanadianWeather$dailyAv[,,1]),tt)
# Fraiman-Muniz Depth
out.FM=depth.FM(fdataobj,trim=0.1,draw=TRUE)
#Modal Depth
out.mode=depth.mode(fdataobj,trim=0.1,draw=TRUE)
out.RP=depth.RP(fdataobj,trim=0.1,draw=TRUE)
out.RT=depth.RT(fdataobj,trim=0.1,draw=TRUE)
out.FSD=depth.FSD(fdataobj,trim=0.1,draw=TRUE)
out.KFSD=depth.KFSD(fdataobj,trim=0.1,draw=TRUE)
## Double Random Projections
out.RPD=depth.RPD(fdataobj,deriv=c(0,1),dfunc2=mdepth.LD,
trim=0.1,draw=TRUE)
out<-c(out.FM$mtrim,out.mode$mtrim,out.RP$mtrim,out.RPD$mtrim)
plot(fdataobj,col="grey")
lines(out)
cdep<-cbind(out.FM$dep,out.mode$dep,out.RP$dep,out.RT$dep,out.FSD$dep,out.KFSD$dep)
colnames(cdep)<-c("FM","mode","RP","RT","FSD","KFSD")
pairs(cdep)
round(cor(cdep),2)
} # }