Functional penalized PLS regression with scalar response using selection of number of PLS components
Source:R/fregre.pc.R
fregre.pls.cv.Rd
Functional Regression with scalar response using selection of number of penalized principal componentes PPLS through cross-validation. The algorithm selects the PPLS components with best estimates the response. The selection is performed by cross-validation (CV) or Model Selection Criteria (MSC). After is computing functional regression using the best selection of PPLS components.
Usage
fregre.pls.cv(
fdataobj,
y,
kmax = 8,
lambda = 0,
P = c(0, 0, 1),
criteria = "SIC",
...
)
Arguments
- fdataobj
fdata
class object.- y
Scalar response with length
n
.- kmax
The number of components to include in the model.
- lambda
Vector with the amounts of penalization. Default value is 0, i.e. no penalization is used. If
lambda=TRUE
the algorithm computes a sequence of lambda values.- P
The vector of coefficients to define the penalty matrix object. For example, if
P=c(0,0,1)
, penalized regression is computed penalizing the second derivative (curvature).- criteria
Type of cross-validation (CV) or Model Selection Criteria (MSC) applied. Possible values are "CV", "AIC", "AICc", "SIC", "SICc", "HQIC".
- ...
Further arguments passed to
fregre.pls
.
Value
Return:
fregre.pls
: Fitted regression object by the best (pls.opt
) components.pls.opt
: Index of PLS components selected.MSC.min
: Minimum Model Selection Criteria (MSC) value for the (pls.opt
) components.MSC
: Minimum Model Selection Criteria (MSC) value forkmax
components.
Details
The algorithm selects the best principal components
pls.opt
from the first kmax
PLS and (optionally) the best
penalized parameter lambda.opt
from a sequence of non-negative
numbers lambda
.
The method selects the best principal components with minimum MSC criteria by stepwise regression using
fregre.pls
in each step.The process (point 1) is repeated for each
lambda
value.The method selects the principal components (
pls.opt
=pls.order[1:k.min]
) and (optionally) the lambda parameter with minimum MSC criteria.
Finally, is computing functional PLS regression between functional explanatory variable \(X(t)\) and scalar response \(Y\) using the best selection of PLS pls.opt
and ridge parameter rn.opt
.
The criteria selection is done by cross-validation (CV) or Model Selection Criteria (MSC).
Predictive Cross-Validation: \(PCV(k_n)=\frac{1}{n}\sum_{i=1}^{n}{\Big(y_i -\hat{y}_{(-i,k_n)}\Big)^2}\),
criteria
=“CV”Model Selection Criteria: \(MSC(k_n)=log \left[ \frac{1}{n}\sum_{i=1}^{n}{\Big(y_i-\hat{y}_i\Big)^2} \right] +p_n\frac{k_n}{n} \)
\(p_n=\frac{log(n)}{n}\),criteria
=“SIC” (by default)
\(p_n=\frac{log(n)}{n-k_n-2}\),criteria
=“SICc”
\(p_n=2\),criteria
=“AIC”
\(p_n=\frac{2n}{n-k_n-2}\),criteria
=“AICc”
\(p_n=\frac{2log(log(n))}{n}\),criteria
=“HQIC”
wherecriteria
is an argument that controls the type of validation used in the selection of the smoothing parameterkmax
\(=k_n\) and penalized parameterlambda
\(=\lambda\).
References
Preda C. and Saporta G. PLS regression on a stochastic process. Comput. Statist. Data Anal. 48 (2005): 149-158.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
See also
See also as:fregre.pc
.
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es