Classification of functional data using maximum depth.
Usage
classif.depth(
group,
fdataobj,
newfdataobj,
depth = "RP",
par.depth = list(),
CV = "none"
)
Arguments
- group
Factor of length n
- fdataobj
fdata
,matrix
ordata.frame
class object of train data.- newfdataobj
fdata
,matrix
ordata.frame
class object of test data.- depth
Type of depth function from functional data:
FM
: Fraiman and Muniz depth.mode
: Modal depth.RT
: Random Tukey depth.RP
: Random project depth.RPD
: Double random project depth.
- par.depth
List of parameters for
depth
.- CV
=“none”
group.est=group.pred
, =TRUEgroup.est
is estimated by cross-validation, =FALSEgroup.est
is estimated.
Value
group.est
: Vector of classes of train sample data.group.pred
: Vector of classes of test sample data.prob.classification
: Probability of correct classification by group.max.prob
: Highest probability of correct classification.fdataobj
:fdata
class object.group
: Factor of length n.
References
Cuevas, A., Febrero-Bande, M. and Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics 22, 3, 481-496.
Examples
if (FALSE) { # \dontrun{
data(phoneme)
mlearn<-phoneme[["learn"]]
mtest<-phoneme[["test"]]
glearn<-phoneme[["classlearn"]]
gtest<-phoneme[["classtest"]]
a1<-classif.depth(glearn,mlearn,depth="RP")
table(a1$group.est,glearn)
a2<-classif.depth(glearn,mlearn,depth="RP",CV=TRUE)
a3<-classif.depth(glearn,mlearn,depth="RP",CV=FALSE)
a4<-classif.depth(glearn,mlearn,mtest,"RP")
a5<-classif.depth(glearn,mlearn,mtest,"RP",CV=TRUE)
table(a5$group.est,glearn)
a6<-classif.depth(glearn,mlearn,mtest,"RP",CV=FALSE)
table(a6$group.est,glearn)
} # }