Classification of functional data using maximum depth.
Usage
classif.depth(
  group,
  fdataobj,
  newfdataobj,
  depth = "RP",
  par.depth = list(),
  CV = "none"
)Arguments
- group
- Factor of length n 
- fdataobj
- fdata,- matrixor- data.frameclass object of train data.
- newfdataobj
- fdata,- matrixor- data.frameclass object of test data.
- depth
- Type of depth function from functional data: - FM: Fraiman and Muniz depth.
- mode: Modal depth.
- RT: Random Tukey depth.
- RP: Random project depth.
- RPD: Double random project depth.
 
- par.depth
- List of parameters for - depth.
- CV
- =“none” - group.est=group.pred, =TRUE- group.estis estimated by cross-validation, =FALSE- group.estis estimated.
Value
- group.est: Vector of classes of train sample data.
- group.pred: Vector of classes of test sample data.
- prob.classification: Probability of correct classification by group.
- max.prob: Highest probability of correct classification.
- fdataobj:- fdataclass object.
- group: Factor of length n.
References
Cuevas, A., Febrero-Bande, M. and Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics 22, 3, 481-496.
Examples
if (FALSE) { # \dontrun{
data(phoneme)
mlearn<-phoneme[["learn"]]
mtest<-phoneme[["test"]]
glearn<-phoneme[["classlearn"]]
gtest<-phoneme[["classtest"]]
a1<-classif.depth(glearn,mlearn,depth="RP")
table(a1$group.est,glearn)
a2<-classif.depth(glearn,mlearn,depth="RP",CV=TRUE)
a3<-classif.depth(glearn,mlearn,depth="RP",CV=FALSE)
a4<-classif.depth(glearn,mlearn,mtest,"RP")
a5<-classif.depth(glearn,mlearn,mtest,"RP",CV=TRUE)     
table(a5$group.est,glearn)
a6<-classif.depth(glearn,mlearn,mtest,"RP",CV=FALSE)
table(a6$group.est,glearn)
} # }