Calculation of the smoothing parameter (h) for a functional data using nonparametric kernel estimation.
Usage
h.default(
fdataobj,
prob = c(0.025, 0.25),
len = 51,
metric = metric.lp,
type.S = "S.NW",
Ker = Ker.norm,
...
)
Arguments
- fdataobj
fdata
class object.- prob
Vector of probabilities for extracting the quantiles of the distance matrix. If
length(prob)=2
a sequence betweenprob[1]
andprob[2]
of lengthlen
.- len
Vector length of smoothing parameter
h
to return only used
whenlength(prob)=2
.- metric
If is a function: name of the function to calculate the distance matrix between the curves, by default
metric.lp
. If is a matrix: distance matrix between the curves. kernel.- type.S
Type of smothing matrix
S
. Possible values are: Nadaraya-Watson estimator "S.NW" and K nearest neighbors estimator "S.KNN"- Ker
Kernel function. By default, Ker.norm. Useful for scaling the bandwidth values according to Kernel
- ...
Arguments to be passed for metric argument.
See also
See Also as metric.lp
, Kernel
and
S.NW
.
Function used in fregre.np
and
fregre.np.cv
function.
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Examples
if (FALSE) { # \dontrun{
data(aemet)
h1<-h.default(aemet$temp,prob=c(0.025, 0.25),len=2)
mdist<-metric.lp(aemet$temp)
h2<-h.default(aemet$temp,len=2,metric=mdist)
h3<-h.default(aemet$temp,len=2,metric=semimetric.pca,q=2)
h4<-h.default(aemet$temp,len=2,metric=semimetric.pca,q=4)
h5<-h.default(aemet$temp,prob=c(.2),type.S="S.KNN")
h1;h2;h3;h4;h5
} # }