Computes predictions for regression between functional explanatory variables and functional response.
Usage
# S3 method for class 'fregre.fr'
predict(object, new.fdataobj = NULL, ...)
See also
See Also as: fregre.basis.fr
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Examples
if (FALSE) { # \dontrun{
# CV prediction for CandianWeather data
rtt<-c(0, 365)
basiss <- create.bspline.basis(rtt,7)
basist <- create.bspline.basis(rtt,9)
nam<-dimnames(CanadianWeather$dailyAv)[[2]]
# fdata class (raw data)
tt<-1:365
tempfdata<-fdata(t(CanadianWeather$dailyAv[,,1]),tt,rtt)
log10precfdata<-fdata(t(CanadianWeather$dailyAv[,,3]),tt,rtt)
rng<-range(log10precfdata)
for (ind in 1:35){
res1<- fregre.basis.fr(tempfdata[-ind], log10precfdata[-ind],
basis.s=basiss,basis.t=basist)
pred1<-predict(res1,tempfdata[ind])
plot( log10precfdata[ind],col=1,ylim=rng,main=nam[ind])
lines(pred1,lty=2,col=2)
Sys.sleep(1)
}
# fd class (smooth data)
basis.alpha <- create.constant.basis(rtt)
basisx <- create.bspline.basis(rtt,65)
dayfd<-Data2fd(day.5,CanadianWeather$dailyAv,basisx)
tempfd<-dayfd[,1]
log10precfd<-dayfd[,3]
for (ind in 1:35){
res2 <- fregre.basis.fr(tempfd[-ind], log10precfd[-ind],
basis.s=basiss,basis.t=basist)
pred2<-predict(res2,tempfd[ind])
plot(log10precfd[ind],col=1,ylim=range(log10precfd$coef),main=nam[ind])
lines(pred2,lty=2,col=2)
Sys.sleep(.5)
}
} # }