Computes the quantile for conditional distribution function.
Arguments
- qua
Quantile value, by default the median (
qua
=0.5).- fdata0
Conditional functional explanatory data of
fdata
class object.- fdataobj
Functional explanatory data of
fdata
class object.- y
Scalar Response.
- fn
Conditional distribution function.
- a
Lower limit.
- b
Upper limit.
- tol
Tolerance.
- iter.max
Maximum iterations allowed, by default
100
.- ...
Further arguments passed to or from other methods.
References
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Examples
if (FALSE) { # \dontrun{
n= 100
t= seq(0,1,len=101)
beta = t*sin(2*pi*t)^2
x = matrix(NA, ncol=101, nrow=n)
y=numeric(n)
x0<-rproc2fdata(n,seq(0,1,len=101),sigma="wiener")
x1<-rproc2fdata(n,seq(0,1,len=101),sigma=0.1)
x<-x0*3+x1
fbeta = fdata(beta,t)
y<-inprod.fdata(x,fbeta)+rnorm(n,sd=0.1)
prx=x[1:50];pry=y[1:50]
ind=50+1;ind2=51:60
pr0=x[ind];pr10=x[ind2]
ndist=161
gridy=seq(-1.598069,1.598069, len=ndist)
ind4=5
y0 = gridy[ind4]
# Conditional median
med=cond.quantile(qua=0.5,fdata0=pr0,fdataobj=prx,y=pry,fn=cond.F,h=1)
# Conditional CI 95% conditional
lo=cond.quantile(qua=0.025,fdata0=pr0,fdataobj=prx,y=pry,fn=cond.F,h=1)
up=cond.quantile(qua=0.975,fdata0=pr0,fdataobj=prx,y=pry,fn=cond.F,h=1)
print(c(lo,med,up))
} # }