Computes the mode for conditional distribution function.
Value
Return the mode for conditional distribution function.
mode.cond: Conditional mode.x: A grid of lengthnwhere the conditional density function is evaluated.f: The conditional density function evaluated atx.
Details
The conditional mode is calculated as the maximum argument of the derivative
of the conditional distribution function (density function f).
References
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
See also
See Also as: cond.F, cond.quantile and
splinefun .
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Examples
if (FALSE) { # \dontrun{
n= 500
t= seq(0,1,len=101)
beta = t*sin(2*pi*t)^2
x = matrix(NA, ncol=101, nrow=n)
y=numeric(n)
x0<-rproc2fdata(n,seq(0,1,len=101),sigma="wiener")
x1<-rproc2fdata(n,seq(0,1,len=101),sigma=0.1)
x<-x0*3+x1
fbeta = fdata(beta,t)
y<-inprod.fdata(x,fbeta)+rnorm(n,sd=0.1)
prx=x[1:100];pry=y[1:100]
ind=101;ind2=101:110
pr0=x[ind];pr10=x[ind2]
ndist=161
gridy=seq(-1.598069,1.598069, len=ndist)
# Conditional Function
I=5
# Time consuming
res = cond.F(pr10[I], gridy, prx, pry, h=1)
mcond=cond.mode(res)
mcond2=cond.mode(res,method="diff")
} # }