Approximates semi-metric distances for functional data of class fdata
or fd
.
Usage
semimetric.basis(
fdata1,
fdata2 = fdata1,
nderiv = 0,
type.basis1 = NULL,
nbasis1 = NULL,
type.basis2 = type.basis1,
nbasis2 = NULL,
...
)
Arguments
- fdata1
Functional data 1 or curve 1.
- fdata2
Functional data 2 or curve 2.
- nderiv
Order of derivation, used in
deriv.fd
- type.basis1
Type of Basis for
fdata1
.- nbasis1
Number of Basis for
fdata1
.- type.basis2
Type of Basis for
fdata2
.- nbasis2
Number of Basis for
fdata2.
- ...
Further arguments passed to or from other methods.
Details
Approximates semi-metric distances for functional data of two fd
class objects. If functional data are not functional fd
class, the
semimetric.basis
function creates a basis to represent the functional
data, by default is used create.bspline.basis and the
fdata
class object is converted to fd
class using the
Data2fd.
The function calculates distances between the
derivative of order nderiv
of curves using deriv.fd
function.
References
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
See also
See also metric.lp
, semimetric.NPFDA
and deriv.fd
Examples
if (FALSE) { # \dontrun{
data(phoneme)
DATA1<-phoneme$learn[c(30:50,210:230)]
DATA2<-phoneme$test[231:250]
a1=semimetric.basis(DATA1,DATA2)
a2=semimetric.basis(DATA1,DATA2,type.basis1="fourier",
nbasis1=11, type.basis2="fourier",nbasis2=11)
fd1 <- fdata2fd(DATA1)
fd2 <- fdata2fd(DATA2)
a3=semimetric.basis(fd1,fd2)
a4=semimetric.basis(fd1,fd2,nderiv=1)
} # }