Represent Asymmetric Smoothing Kernels: normal, cosine, triweight, quartic and uniform.
AKer.norm=ifelse(u>=0,2*dnorm(u),0) | |
AKer.cos=ifelse(u>=0,pi/2*(cos(pi*u/2)),0) | |
AKer.epa=ifelse(u>=0 & u<=1,3/2*(1-u^2),0) | |
AKer.tri=ifelse(u>=0 & u<=1,35/16*(1-u^2)^3,0) | |
AKer.quar=ifelse(u>=0 & u<=1,15/8*(1-u^2)^2,0) | |
AKer.unif=ifelse(u>=0 & u<=1,1,0) |
Details
Type of Asymmetric kernel:
Asymmetric Normal Kernel:
AKer.norm | |
Asymmetric Cosine Kernel: AKer.cos | |
Asymmetric Epanechnikov Kernel: AKer.epa | |
Asymmetric Triweight
Kernel: AKer.tri | |
Asymmetric Quartic Kernel:
AKer.quar | |
Asymmetric Uniform Kernel: AKer.unif |
References
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
Hardle, W. Applied Nonparametric Regression. Cambridge University Press, 1994.
Author
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es